Visualization Overview¶
ComProScanner provides comprehensive visualization tools for both extracted data and evaluation results.
Two Visualization Modules¶
1. Data Visualizer¶
Visualize extracted composition-property data:
- Material family distributions
- Precursor analysis
- Characterization techniques
- Knowledge graphs
2. Evaluation Visualizer¶
Visualize evaluation metrics for both single models and multiple model comparisons:
- Bar charts
- Radar charts
- Heatmaps
- Violin plots
- Histograms
Quick Examples¶
Data Visualization¶
from comproscanner import data_visualizer
# Pie chart
fig = data_visualizer.plot_family_pie_chart(
data_sources=["results.json"],
output_file="families.png"
)
# Knowledge graph
data_visualizer.create_knowledge_graph(
result_file="results.json"
)
Evaluation Visualization¶
from comproscanner import eval_visualizer
# Bar chart for single model
fig = eval_visualizer.plot_single_bar_chart(
result_file="evaluation.json",
output_file="metrics.png"
)
# Radar chart comparison for multiple models
fig = eval_visualizer.plot_multiple_radar_charts(
result_sources=["eval1.json", "eval2.json"],
model_names=["Model A", "Model B"],
output_file="comparison.png"
)
Supported Input Sources¶
python plot_function(data_sources=["results.json"])
python plot_function(data_sources=["r1.json", "r2.json", "r3.json"])
python plot_function(folder_path="results_folder/")
python plot_function(data_sources=[data_dict1, data_dict2])
Next Steps¶
- Data Visualization Guide - Visualize extracted data
- Evaluation Visualization Guide - Visualize evaluation results
- Learn about RAG Configuration